TABLE VI				
Interatomic Distances (Å) in Li₄RhH₅				
Rh–Rh	3.88	Li(2)-2 Rh	2.79	
-4 Li(1)	2.55	-Li(1)	2.56	
-4 Li(2)	2.79	-2 Li(1)	2.71	
-2 H(1)	1.81	-2 Li(1)	2.75	
-2 H(2)	1.95	-Li (2)	2.67	
-2 H(3)	1.96	-2 H(1)	1.83	
Li(1)-2 Rh	2.55	-2 H(2)	1.94	
-Li(1)	2.46	$-\mathrm{H}(3)$	1.82	
-Li(1)	2.53	H(1)-Rh	1.81	
-Li(2)	2.56	-2 Li(1)	1.95	
-2 Li(2)	2.71	-2 Li(2)	1.83	
-Li(2)	2.75	-H(1)	2.16	
-2 H(1)	1.95	H(2)-Rh	1.95	
-H(2)	1.95	-Li(1)	1.95	
-H(2)	1.97	-Li(1)	1.97	
-H(3)	1.82	-2 Li(2)	1.94	
		H(3)-2 Rh	1.96	
		-2 Li(1)	1.82	
		-2 Li(2)	1.82	

found in tris(triphenylphosphine)rhodium carbonyl hydride.¹²

The similarities between the proposed structures and Li--H distances for the lithium-rhodium hydrides and those of lithium hydride, along with other similarities such as brittleness and reaction with water to yield hydrogen gas, lead to the conclusion that the bonding of these compounds is predominantly ionic.

The fact that Li_4RhH_5 exhibits temperature-independent paramagnetism is consistent with an ionic model. The temperature-independent paramagnetism of Li_4RhH_4 is suggestive of rhodium metallic bonding along the *c* axis of the crystal. Preliminary room-temperature electrical resistivity measurements on polycrystalline samples (resistivities of about 0.5 ohm cm for Li_4RhH_4 and about 1.5 ohm cm for Li_4RhH_5)

(12) S. J. La Placa and J. H. Ibers, Acta Crystallogr., 18, 511 (1965).

are inconclusive on this point, but the relatively large Rh-Rh distance (4.11 Å) along the c axis argues against delocalized metallic bonding between rhodium atoms. On the other hand, intermetallic bonding between rhodium and lithium is quite possible. The Li-Rh interatomic distances in both compounds are similar to that found in the intermetallic compound LiRh (2.663 Å).¹³ This type of bonding may account for the apparent absence of an unpaired electron in the four-hydrogen compound.

In conclusion it should be noted that the lithium rhodium hydrides are not unique. We are currently studying the Li-Pd-H and Li-Ir-H systems and find evidence of ternary hydrides.14,15 Graefe and Robeson¹⁶ have observed reactions between lithium hydride and several metals. Moyer, et al.,¹⁷ have prepared and studied Sr₂IrH₄ and in addition have observed ternary phases in other alkaline earth-transition metal-hydrogen systems. Reilly and Wiswall¹⁸ have studied the properties of Mg₂NiH₄, which they prepared by hydriding Mg₂Ni. There are obvious similarities between these compounds, and one naturally seeks a unifying concept to account for their bonding and structures. We hope that the structures proposed here for the lithium rhodium hydrides and the ionic model deduced therefrom will help in attaining that goal.

(13) S. S. Sidhu, K. D. Anderson, and D. D. Zauberis, *ibid.*, **18**, 906 (1965).

(14) F. C. Chang and C. B. Magee, Abstracts, 155th National Meeting of the American Chemical Society, San Francisco, Calif., April 1968, No. M-144.
(15) J. Liu and C. B. Magee, Abstracts, 160th National Meeting of the

American Chemical Society, Chicago, Ill., Sept 1970, No. INOR-25. (16) A. F. Graefe and R. K. Robeson, J. Inorg. Nucl. Chem., 29, 2917 (1967).

(17) R. O. Moyer, R. Ward, L. Katz, and J. Tanaka, Inorg. Chem., 8, 1010 (1969).

(18) J. J. Reilly and R. H. Wiswall, Jr., ibid., 7, 2254 (1968).

Contribution from the Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

The Use of Phosphorus Pentafluoride as a Fluorinating Agent in Organosilicon Chemistry. III.¹ Synthesis and Characterization of Some New Fluorosiloxanes²

BY EDWARD W. KIFER AND CHARLES H. VAN DYKE*

Received June 7, 1971

Although the silicon-oxygen bond of siloxanes and alkoxysilanes is readily cleaved by phosphorus pentafluoride, the siliconhydrogen bond of hydrosiloxanes can be easily fluorinated at low temperatures by this reagent thus providing a convenient source of fluorosiloxanes. The synthesis and characterization of $FSiH_2OSiH_3$, $(FSiH_2)_2O$, $F(CH_3)HSiOSiH_2CH_3$, and $[F(CH_3)HSi]_2O$ are described.

Introduction

In the course of investigating the cleavage of the silicon-oxygen bond of siloxanes by phosphorus pentafluoride, we observed an interesting fluorination reaction occurring with siloxanes that contained siliconhydrogen bonds.^{1a} Fluorosiloxanes were produced in the reaction together with the expected cleavage products. Since methods of preparing partially fluorinated siloxanes are practically nonexistent, we undertook a study into the general feasibility of preparing these types of compounds by the interaction of hydrosiloxanes with phosphorus pentafluoride.

Experimental Section

Apparatus.—A conventional Pyrex-glass high-vacuum system

Papers I and II in this series: (a) E. W. Kifer and C. H. Van Dyke, *Chem. Commun.*, 1330 (1969); (b) M. A. Finch, L. H. Marcus, C. Smirnoff, C. H. Van Dyke, and N. Viswanathan, *Syn. Inorg. Metal-Org. Chem.*, 1, 103 (1971).

⁽²⁾ Presented, in part, at the 156th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept 1968.

was used to manipulate all volatile compounds.³ Stopcocks and ground-glass joints were lubricated with Apiezon N grease. Mass spectra were obtained by means of an AEI Model MS-9 mass spectrometer. Infrared spectra were obtained on a Perkin-Elmer Model 457 spectrophotometer with the sample confined in a 10-cm cell fitted with KBr windows. Proton nmr spectra were obtained on a Hitachi Perkin-Elmer R20 spectrometer operating at ambient temperatures. Sample concentrations were approximately 10-15% by volume in CFCl₃ with a small amount of $(CH_3)_4$ Si added as an internal reference.

Gas chromatographic separations were performed on a modified Varian Aerograph Model A-90-P3 gas chromatograph equipped with an 18 ft \times $^3/_8$ in. aluminum column packed with a 20% silicone oil (710) on Chromosorb W (60-80 mesh) support. A special inlet and collection system was constructed which allowed the samples to be chromatographed without exposure to air. The unit was operated at a flow rate of 100 cm³ of He min⁻¹ and at a column temperature of 30°. All reactions were carried out in 15-ml all-glass break-seal tubes.

Materials.-PF5 (Air Products) was purified by repeated distillations through a trap at -134° and characterized by its infrared spectrum.⁴ (SiH₃)₂O (mol wt: calcd, 78.2; found, 77.7; purity confirmed by its infrared spectrum⁵) was prepared by the hydrolysis of SiH₃Br and purified by distillations through a trap at -111°. (CH₃SiH₂)₂O (mol wt: calcd, 106.3; found, 106.1; purity confirmed by its infrared spectrum⁶) was prepared by the hydrolysis of (CH₃SiH₂)₂S.⁷ CH₃OSiH₃ (mol wt: calcd. 62.2; found, 62.3; purity confirmed by its infrared spectrum^{8,9}) and CH₃OSi(CH₃)₃ (mol wt: calcd, 104.2; found, 105.1; purity confirmed by gas chromatography) were prepared by the interaction of CH₃OH with (SiH₃)₂S and [(CH₃)₃Si]₂S, respectively.^{9,10} (SiH₃)₂S, (CH₃SiH₂)₂S, and [(CH₃)₃Si]₂S were prepared by interacting the corresponding iodosilane with HgS.7,11,12 Samples of SiH₃Br and (Si₂H₅)₂O were kindly provided by Dr. L. G. L. Ward. [(CH₃)₃Si]₂O (Anderson; purity confirmed by its infrared spectrum¹³) was purified by distillation in the vacuum line.

Syntheses. $FSiH_2OSiH_3$.—The interaction of $(SiH_3)_2O$ (2.0) mmol) with PF₅ (2.1 mmol) at -78° for 15 min produces a mixture of the new fluorosiloxanes FSiH2OSiH3 and (FSiH2)2O (identified by mass spectroscopy) together with various other compounds including POF₃, PF₃, SiH₃F, SiH₂F₂, and SiF₄, all of which can be identified by their characteristic infrared spectra.14-18 Hydrogen is also produced in the reaction and can be removed from the products by its distillation through a -196° trap. The fluorosiloxanes can be removed with POF_a as an impurity from the product mixture by their condensation in a trap at -134° . Impure FSiH₂OSiH₃ is recovered by passing the condensate through a trap at -116° , in which most of the $(FSiH_2)_2O$ and POF3 condense. Small amounts of (FSiH2)2O and POF3 do pass the trap at -116° and the final purification of FSiH₂-OSiH₃ in this work was achieved by gas chromatography [compound (retention time, min): POF₃ (3.8), FSiH₂OSiH₃ (4.5), $(FSiH_2)_2O$ (4.8)]. Care must be taken in order to obtain FSiH2OSiH3 free of (FSiH2)2O, owing to the closeness of their retention times. To separate the latter two compounds, it was necessary to divert the effluent from the chromatograph from the

- 78, 1327 (1956); D. C. McKean, Spectrochim. Acta, Sect. A, 26, 1833 (1970).
 (6) E. A. V. Ebsworth, M. Onyszchuk, and N. Sheppard, J. Chem. Soc., 1453 (1958).
- (7) H. J. Emeléus, M. Onyszchuk, and W. Kuchen, Z. Anorg. Allg. Chem., 283, 74 (1956).
- (8) B. Sternbach and A. G. MacDiarmid, J. Amer. Chem. Soc., 88, 3384 (1961).
- (9) G. S. Weiss and E. R. Nixon, Spectrochim. Acta, 21, 903 (1965).
- (10) N. Viswanathan and C. H. Van Dyke, J. Chem. Soc. A, 487 (1968).
- (11) H. J. Emeléus, A. G. MacDiarmid, and A. G. Maddock, J. Inorg. Nucl. Chem., 1, 194 (1955).
- (12) C. Eaborn, J. Chem. Soc., 3077 (1950).
- (13) C. C. Cerato, J. L. Lauer, and H. C. Beachell, J. Chem. Phys., 22, 1 (1954).
- (14) H. S. Gutowsky and A. D. Liehr, ibid., 20, 1652 (1952).
- (15) M. K. Wilson and S. R. Polo, ibid., 20, 1716 (1952).
- (16) C. Newman, J. K. O'Loane, S. R. Polo, and M. K. Wilson, *ibid.*, 25, 855 (1956).
- (17) S. Cradock, E. A. V. Ebsworth, and A. G. Robiette, Trans. Faraday Soc., **60**, 1502 (1964).
- (18) E. A. Jones, J. S. Kirby-Smith, P. J. H. Woltz, and A. H. Nielsen, J. Chem. Phys., 19, 242 (1951).

trap collecting the FSiH₂OSiH₃ before the (FSiH₂)₂O began to appear. This resulted in some loss of FSiH₂OSiH₃, due to the overlap of peaks, although the total yield of FSiH₂OSiH₃ (1.2 mmol) in the reaction described was 60%. The purity of the compound was confirmed by its gas-phase molecular weight (calcd 96.2, found 96.2) and by its mass and proton nmr spectra. The proton nmr spectrum consists of a singlet and a widely spaced doublet in a 3:2 ratio, assigned to the SiH₃ and SiH₂F protons, respectively. On further scale expansion, the singlet absorption was actually a closely spaced doublet, owing to long-range F-H coupling. Data are given in the Discussion.

 $FSiH_2OSiH_3$, when purified, can be manipulated in standard vacuum-line operations without any decomposition. It does not react with mercury or glass.

(FSiH₂)₂O.-A reaction identical with the one used to synthesize FSiH₂OSiH₃ can be used to prepare (FSiH₂)₂O, although better yields are obtained if the ratio of PF5 to (SiH3)2O is increased and a longer reaction time is employed. As an illustration, $(SiH_8)_2O$ (2.0 mmol) and PF₅ (4.2 mmol) were allowed to interact at -78° for 1 hr. Hydrogen is removed as described previously. Both (FSiH2)2O and POF3 condense in a trap at -116° , while the other products formed are sufficiently volatile at this temperature to pass through. The final purification of (FSiH2)2O (0.62 mmol, 31% yield) was achieved by gas chromatography [compound (retention time, min): (FSiH2)2O (4.8), $POF_{3}(3.8)$]. The purity of the $(FSiH_{2})_{2}O$ was confirmed by the compound's molecular weight (calcd 114.2, found 114.3) and mass spectrum. The single doublet proton nmr spectrum of the compound is consistent with the symmetrical (FSiH2)2O formulation. Data are given in the Discussion. The compound does not react with mercury or glass and it can be manipulated in standard vacuum-line operations without any decomposition.

CH₃SiHFOSiH₂CH₃.—A typical synthesis of CH₃SiHFOSiH₂-CH₃ involves allowing (CH₃SiH₂)₂O (2.0 mmol) to react with PF₅ (2.0 mmol) at -78° for 20 min. Hydrogen is removed and a mixture of the fluorosiloxanes CH₃SiHFOSiH₂CH₃ and (CH₃Si-HF)2O, together with POF3, CH3SiH2F, and a small amount of HPOF₂ (last three compounds identified by their infrared spectra^{θ ,14,19}), condenses in a -134° trap while the more volatile products, PF_8 and SiF_4 , pass through. Distillation of the -134° condensate through a trap at -96° removes (CH₃SiHF)₂O and HPOF₂ while the CH₃SiHFOSiH₂CH₃ (1.15 mmol, 57% yield) is removed from the more volatile distillate by its subsequent condensation in a trap at -111° . The compound's purity was confirmed by its gas-phase molecular weight (calcd 124.3, found 124.7) and its mass spectrum. The proton nmr spectrum of CH₃SiHFOSiH₂CH₃ consisted of three quartets, two doublets, and one triplet, the relative intensities of which were in accord with the compound's structure. The data are presented in the Discussion. The compound can be distilled in the vacuum line without any decomposition.

 $(CH_3SiHF)_2O$.—The synthesis of $(CH_3SiHF)_2O$ is readily achieved by interaction of $(CH_3SiH_2)_2O$ (2.0 mmol) with PF₅ (1.0 mmol) at -78° for 30 min. $(CH_3SiHF)_2O$ and a small amount of HPOF₂ (identified by its infrared spectrum¹⁹) condense in a trap at -96° . The HPOF₂ can be removed from the $(CH_3SiHF)_2O$ by adding water to the mixture followed by additional fractionations. The purity of the $(CH_3SiHF)_2O$ (1.2 mmol, 60% yield) recovered was confirmed by its gas-phase molecular weight (calcd 142.3, found 141.7) and its mass spectrum. The proton nmr spectrum of the compound has been reported previously and is consistent with the symmetrical $(CH_3SiHF)_2O$ formulation.²⁰

Mass Spectra of $FSiH_2OSiH_3$, $(FSiH_2)_2O$, $CH_3SiHFOSiH_2-CH_3$, and $(CH_3SiHF)_2O$.—The parent ion and the expected fragments were observed in the 70-eV mass spectra of the fluorosiloxanes. In each instance the parent ion less one hydrogen (P - 1 fragment) was the most intense peak in the spectrum. Precise mass measurements for the P - 1 fragments yielded the following data (fragment, precise mass, calculated mass): ²⁸Si_2-H_4FO^+, 94.9787, 94.9785; ²⁸Si_2H_8F_2O^+, 112.9692, 112.9691; ²⁸Si_2C_4H_3FO^+, 123.0100, 123.0098; ²⁸Si_2C_2H_7F_2O^+, 141.0004, 141.0004.

Vapor Pressures of $FSiH_2OSiH_3$, $(FSiH_2)_2O$, and $CH_3Si-HFOSiH_2CH_3$.—The vapor pressures of freshly purified samples were measured at a number of temperatures in a pretreated mercury manometer system. Data were obtained with both

⁽³⁾ D. F. Shriver, "The Manipulation of Air-sensitive Compounds," Mc-Graw-Hill, New York, N. Y., 1969.

⁽⁴⁾ J. P. Pemsier and W. G. Planet, Jr., J. Chem. Phys., 24, 920 (1956).

⁽⁵⁾ R. C. Lord, D. W. Robinson, and W. C. Schumb, J. Amer. Chem. Soc.,

⁽¹⁹⁾ T. L. Charlton and R. G. Cavell, Inorg. Chem., 6, 2204 (1967).

⁽²⁰⁾ S. G. Frankiss, J. Phys. Chem., 71, 3418 (1967).

ascending and descending temperatures to check reproducibility and to detect decomposition during the measurements. The results are given in Table I.

 TABLE I

 VAPOR PRESSURE DATA FOR THE NEW FLUOROSILOXANES

FS	iH2OSiI	I: ——	(F	SiH_2	<u> </u>	—CH₃SiH	FOSIH	2CH3
Temp,	$\sim -P, T$	Γorr—	Temp,	~~P, T	`orr—	Temp,	-P, 1	orr
°C	Calcd	Obsd	°C	Calcd	Obsd	°C	Calcd	Obsđ
-96.2	4.7	4.7	-95.8	8.0	8.2	-78.0	2.5	2.8
-86.6	10.3	10.3	-84.1	16.4	16.0	-64.0	6.3	5.8
-80.9	15.8	16.0	-77,9	23.2	22.7	55.8	10.1	9.6
-78.9	18.2	18.5	-73.2	29.8	29.4	-47.9	15.5	15.0
-70.7	32.0	31.9	-64.0	47.1	47.3	-36.2	27.7	27.8
-67.8	38.6	38.7	-61.7	52.4	52.7	-23.8	48.3	49.5
-64.2	48.5	49.0	-55.1	70.6	71.1	-36.3^{a}	27.6	27.7
-55.0	83.6	83.8	-51.0	84.1	85.0	-47.9^{a}	15.5	15.0
-45.1	143.0	142.9	-64.0^{a}	47.1	47.4	-55.8^{a}	10.1	9.6
-64.2^{a}	48.5	49.1	-77.9^{a}	23.2	22.8	-64.1^{a}	6.3	6.0
-78.9^{a}	18.2	18.5	-95.8^{a}	8.0	8.2			
-96.2^{a}	4.7	4.7						

^a Pressure observed on decreasing the temperature.

Vapor pressures in the ranges studied are given by the following equations: For $FSiH_2OSiH_3$

$$\log P_{\text{Torr}} = \frac{-1172.5}{t + 273.16} + 7.2965$$

for (FSiH₂)₂O

$$\log P_{\text{Torr}} = \frac{-901.2}{t + 273.16} + 5.9814$$

and for CH3SiHFOSiH2CH3

$$\log P_{\text{Torr}} = \frac{-1148.4}{t + 273.16} + 6.2892$$

Extrapolated boiling points are -7.6° for FSiH₂OSiH₃, 17.5° for (FSiH₂)₂O, and 63.8° for CH₃SiHFOSiH₂CH₃.

Infrared Spectra of $FSiH_2OSiH_3$, $(FSiH_2)_2O$, $CH_3SiHFOSiH_2-CH_3$, and $(CH_3SiHF)_2O$.—Gas-phase infrared absorption data for the above fluorosiloxanes are summarized together with tentative assignments of the bands in Tables II and III.

TABLE II					
INFRARED ABSORPTION MAXIMA OF FSiH ₂ OSiH ₈ and (FSiH ₂) ₂ O					
FSiH₂OSiH₃ ^a	$iH_2OSiH_3^a$ (FSiH ₂) ₂ O ^b Assignment ^c				
2207 s	2212	Si-H str			
1720 w	1740 w	Combination of sym and asym Si-O-Si str			
1225 w	1230 w	Combination of Si-O str (asym) and Si-O-Si skeletal bend mode ^d			
1123 s	1134 s	Si-O-Si str (asym)			
970 s	978 s	Bend of the SiH ₂ angles			
948 d, vs	937 d, vs 927	Si-F str			
883 (868 (d, w	883 d, m	Unassigned			
731 m	723 m	SiH ₃ and/or SiH ₂ rock (or twist)			

^a Spectrum recorded at pressures of 3 and 9 Torr. ^b Spectrum recorded at pressures of 3 and 8 Torr. ^c Tentative assignments for the absorptions made by comparing the spectra with the assigned spectra of $(SiH_3)_2O_5$ SiH₃F,¹⁶ and CH₃SiH₂F.⁶ ^d $\nu_{Si-O(asym)} + 2\delta_{Si-O-Si}$.

Reactions of Phosphorus Pentafluoride. (a) With Hexamethyldisiloxane.—The reaction of $[(CH_3)_3Si]_2O$ (1.0 mmol) with PF₃ (1.0 mmol) at 25° for 1 hr produced a mixture of $(CH_3)_3SiF$ (2.0 mmol) and POF₃ (1.0 mmol). The components of the mixture could not be quantitatively separated by standard vacuum line fractionations; the analysis was made by mixed molecular weight data, gas chromatography, and the infrared spectra of the compounds.^{14,21} No reaction was observed on

TABLE III	
INFRARED ABSORPTION	MAXIMA OF
CH3SiHFOSiH2CH3 AND	(CH ₃ SiHF) ₂ O

CH2SiHFO- SiH2CH3 ^a	(CH3SiHF)2Ob	Assignment ^c
2973 m	2989	C–H str
2196 d, s	2202 s	Si–H str
1672 w	1685 w	Combination of sym and asym Si-O-Si str
1405 w	1405) 1381 (d, w	CH ₃ def (asym)
1266 m	1271 m	CH ₃ def (sym)
1180 w	1183 w	Unassigned
1102 s	1115 s	Si–O–Si str (asym)
957 s	931 s	SiH and SiH ₂ bend (scissors)
918 sh		
900 s	889 s	Si–F str
845 w	843 m	CH ₃ rock
771 s	773 s	Si–C str
510 w		SiH ₂ rock

^a Spectrum recorded at pressures of 4 and 13 Torr. ^b Spectrum recorded at pressures of 6 and 12 Torr. ^c Tentative assignments for the absorptions made by comparing the spectra with the assigned spectra of $(CH_8SiH_2)_2O$ and $CH_8SiH_2F.^6$

holding a mixture of $[(CH_3)_{\rm S}Si]_2O~(1.6~mmol)$ with PFs (1.0 mmol) at -78° for 24 hr.

(b) With Methoxytrimethylsilane.—The 12-hr reaction of $CH_3OSi(CH_3)_3$ (1.0 mmol) with PF₅ (1.0 mmol) at room temperature produced a white solid and $(CH_3)_3SiF$ (1.0 mmol, confirmed by its infrared spectrum²¹), together with small amounts of several other volatile products identified by their mass or infrared spectra as CH_3F , POF₃, and CH_3OPOF_2 .^{14,22}

(c) With Methoxysilane.—The 12-hr reaction of CH_3OSiH_3 (1.0 mmol) and PF_5 (1.0 mmol) at -78° produced a nonvolatile white solid and SiH_3F (1.0 mmol) (mol wt: calcd, 50.1; found, 49.7; confirmed by its infrared spectrum¹⁸) together with a small amount of CH_3OPOF_2 . There was a trace amount of hydrogen produced in the reaction; PF_3 and POF_4 were not formed. The solid material decomposed to form an uncharacterized oily liquid after several hours at room temperature.

The reaction was repeated using approximately 1:1.4 and 1:2.5 mole ratios of PF₅ to CH₈OSiH₃. In each case, a white solid formed together with SiH₃F (1.3 and 1.7 mmol in each case, respectively) and trace amounts of other compounds as described above.

(d) With Bis(disilaryl) Ether.—A mixture of PF₅ (0.36 mmol) and $(SiH_3SiH_2)_2O$ (0.35 mmol) was held at -78° for 1 hr. The products could not be completely separated in the vacuum line but were separated into SiH_3SiH_2F (0.7 mmol identified by its infrared spectrum²³) and POF₂ (0.36 mmol identified by its infrared spectrum¹⁴) by gas chromatography.

(e) Attempted Reaction with Disilyl Sulfide.—A mixture of $(SiH_3)_2S$ (2.0 mmol) and PF₅ (2.0 mmol) was held at -78° for 12 hr. There were no signs of a reaction occurring under these conditions, based on distillation and infrared data.^{4,24} Similarly, after 3 hr at -45° and after 6 hr at room temperature, there was no sign of a reaction occurring. At the end of these experiments, $(SiH_3)_2S$ (1.99 mmol), PF₅ (1.96 mmol), and a trace amount of POF₃ were recovered from the final reaction tube.

Results and Discussion

Having shown that phosphorus pentafluoride readily fluorinates the silicon-hydrogen bond of siloxanes, we have undertaken a study of certain monomeric silicon compounds that contain silicon-hydrogen, siliconfluorine, and silicon-oxygen bonds. Halosiloxanes have, of course, been reported in the literature, although very little work has been reported on fluorinesubstituted siloxanes. The main synthesis of the few compounds of this type which have been reported is

⁽²¹⁾ H. Kriegsmann, Z. Anorg. Allg. Chem., 294, 113 (1958).

⁽²²⁾ T. Wu, J. Chem. Phys., 10, 116 (1942).

⁽²³⁾ M. Abedini and A. G. MacDiarmid, Inorg. Chem., 2, 608 (1963).

⁽²⁴⁾ E. A. V. Ebsworth, R. Taylor, and L. A. Woodward, Trans. Faraday Soc., 55, 211 (1959).

based on the hydrolysis of certain halofluorosilanes (halo = chloro, bromo, iodo). This method is successful owing to the greater tendency of silicon-chlorine, -bromine, or -iodine bonds to undergo hydrolysis than silicon-fluorine bonds. For example, polyorganofluorosiloxanes have been prepared by the hydrolysis of organofluorosilicon chlorides. RSiCl₂F.²⁵ The only organofluorosiloxane reported in the literature that contains siliconhydrogen bonds is (CH₃SiHF)₂O. Frankiss has noted that this compound is formed as a side product in the antimony trifluoride conversion of CH3SiHI2 to CH3-SiHF₂ when a small amount of water is present.²⁰ Shortly after our work was completed, Britt and Moniz reported the synthesis of an organofluorosiloxane based on fluorination of the silicon-hydrogen bond in [(CH₃)₃-SiO]₂Si(H)CH₃ by silver fluoride.²⁶

We now report a convenient synthesis of certain monomeric fluorosiloxanes that is based on the fluorination of silicon-hydrogen bonds of hydrosiloxanes by phosphorus pentafluoride: $(RSiH_2)_2O + PF_5 \rightarrow$ $RSiHFOSiH_2R + (RSiHF)_2O + HPF_4$ and/or H_2PF_3 $(R = CH_3, H)$. The fluorophosphoranes presumably produced in the reaction were not isolated, owing to their facile decomposition in the vacuum line. Their known decomposition products in the presence of glass are H_2 , PF_3 , $HPOF_2$, and SiF_4 , all of which were observed as products of the overall fluorination reactions.²⁷ These compounds are easily separated from fluorosiloxanes produced.

There are two competing reactions in the interaction of hydrosiloxanes with phosphorus pentafluoride. One involves the fluorination of the silicon-hydrogen bonds without cleaving the silicon-oxygen bonds, while the other is a straightforward Si-O-Si bond cleavage reaction that produces the corresponding silyl fluoride and POF₃. Phosphorus fluorides are known to cleave easily the silicon-oxygen bond of siloxanes,28 and in order to fluorinate the silicon-hydrogen bond of hydrosiloxanes by our method, the reactions must be carried out at low temperatures. We found that -78° (Dry Ice bath) was a convenient temperature for fluorinating hydrosiloxanes by phosphorus pentafluoride. At higher temperatures, appreciable cleavage of the siliconoxygen bond was noted. We have found that under these low-temperature conditions, phosphorus pentafluoride fluorinates only one silicon-hydrogen bond per silicon atom and that the reaction can be controlled to give the corresponding monofluoro or difluorodisiloxane by adjusting the duration of the reaction and in certain cases the relative amounts of reactants. We have tested the general fluorination reaction on (SiH₃)₂O and (CH₃SiH₂)₂O and have been able to prepare and characterize the fluorosiloxanes FSiH2OSiH3, (FSiH2)2O, CH₃SiHFOSiH₂CH₃, and (CH₃SiHF)₂O.

The mechanism for the siloxane fluorination reactions described has not been established although it is of interest to note some related fluorinations that involve

(26) A. D. Britt and W. B. Moniz, J. Amer. Chem. Soc., 91, 6204 (1969).
 (27) R. R. Holmes and R. N. Storey, Inorg. Chem., 5, 2146 (1966); P. M. Treichel, R. A. Goodrich, and S. B. Pierce, J. Amer. Chem. Soc., 89, 2017 (1967).

phosphorus pentafluoride. This reagent is known to fluorinate the silicon-hydrogen bonds of certain other organosilicon compounds such as CH₃SiH₂Co(CO)₄, CH₃SiH₂Cl and various organosilanes at room temperature.29 The interaction of organosilanes with phosphorus pentafluoride at 0° has been used to prepare organofluorosilicon hydrides of the type RSiH₂F and RSiHF₂ (where $R = C_2H_5$, CH₂=CH, and CH₈CH= CH₂).^{1b} In the present work, we found that hydrosiloxanes were fluorinated at much lower temperatures (-78°) than the other compounds which have been fluorinated by this method. Trichlorosilane is not fluorinated by phosphorus pentafluoride at room temperature, and, noting that the tendency to fluorinate the silicon-hydrogen bond increases in the series Cl₃- $SiH < CH_3SiH_3 < (CH_3)_3SiH$, it has been suggested that the rate-controlling step in these reactions may involve an electrophilic attack of a silicon-hydrogen bond by phosphorus.29

Each of the fluorosiloxanes prepared gave first-order proton nmr spectra and the results were used to establish the symmetrical nature of the difluorodisiloxanes. A summary of the data obtained from the spectra together with data for the starting hydrosiloxanes is given in Table IV.

TABLE IV					
Proton Magnetic Resonance Data for					
FLUOROSILOXANES AND RELATED SILICON ETHERS ⁶					

Compound	Proton environ- ment	τ	<i>J</i> ²⁹ 8і- н	$J_{\rm HSiF}$	Other coupling constants
$(CH_{3}SiH_{2})_{2}O^{b}$	CH3	9.74			$J_{\rm CHSiH} = 3.3$
	SiH2	5.33	212.3		
CH'3SiH'FOSiH2CH3	CH'3	9.74			$J_{\rm CHSiH} = 3.5$,
	CH3	9.65			$J_{\rm CH'SiH'} = 1.4,$
	SiH'	5.32	e	68.4	$J_{\rm CH'SiH'F} = 6.4$
	SiH2	5.29	е		
(CH3SiHF)2Oc	CH3	9.70			$J_{\rm CHSiH} = 1.3,$
	SiH	5.26	261.1	68.2	$J_{\rm CHSiHF} = 6.6$
$(SiH_3)_2O^d$	SiH:	5.39	221.5		
SiH ₃ OSiH ₂ F	SiH3	5.28	224.7		$J_{\rm FSiOSiH} = 0.5$
	$SiH_2(F)$	5.36	e	61.2	
$(SiH_2F)_2O$	$SiH_2(F)$	5.25	е	61.2	

^a All coupling constants given in hertz. ^b E. A. V. Ebsworth and S. G. Frankiss, *Trans. Faraday Soc.*, **59**, 1518 (1963). ^e Reference 20. ^d E. A. V. Ebsworth and J. J. Turner, *J. Phys. Chem.*, **67**, 805 (1963); *J. Chem. Phys.* **36**, 2628 (1962). ^e Not observed.

In comparing the absorptions of the unsymmetrical siloxanes FSiH2OSiH3 and CH3SiHFOSiH2CH3 with the corresponding starting hydrosiloxanes, it can be noted that the substitution of a fluorine for a hydrogen atom on silicon has caused only a very small downfield shift of the resonance due to the remaining proton(s)on that silicon atom but causes a larger downfield shift of the H(Si) absorption on the opposite side of the molecule. Similarly, in CH₃SiHFOSiH₂CH₃, the CH₃ protons on the unsubstituted silicon undergo more of a change than the CH₃ protons on the silicon atom where fluorine substitution has occurred. Unfortunately, the carbon analogs of the above silicon compounds have not been studied, thus preventing any comparisons along these lines. It is of particular interest to note, however, that this type of trend is not observed in comparing the chemical shift of $(CH_3)_2O$ (τ 6.79³⁰) with

⁽²⁵⁾ M. S. Cohen, D. Grafstein, R. Dudak, and J. Green, Abstracts, 135th National Meeting of the American Chemical Society Meeting, Boston, Mass., April 1959, p 24S; Angew. Chem., **71**, 470 (1951); British Patent 627,800 (1949) [Chem. Abstr., **44**, 4023 (1950)]; M. S. Cohen and D. Grafstein, U. S. Patent 2,981,746 (1961) [Chem. Abstr., **55**, 24103 (1961)].

⁽²⁸⁾ R. Schmutzler, Inorg. Chem., 3, 410 (1964); J. Chem. Soc., 4551 (1964).

⁽²⁹⁾ S. K. Gondal, A. G. MacDiarmid, F. E. Saalfeld, and M. V. Mc-Dowell, Inorg. Nucl. Chem. Lett., 5, 351 (1969).

⁽³⁰⁾ S. G. Frankiss, J. Phys. Chem., 67, 752 (1963).

the shifts obtained in ClCH₂OCH₃ (τ_{CH_2} 4.7; τ_{CH_3} 6.62). Anomalous chemical shifts have been previously noted for the H(Si) chemical shifts of silane derivatives that contain two or more electronegative substituents such as those containing oxygen or fluorine attached to silicon.³¹ Actually, the chemical shift of the SiH₂ protons of SiH₂(OSiH₃)F is not that surprising, considering that it is just about the average of the SiH₂ chemical shifts found for the related compounds SiH2- $(OSiH_3)_2$ (τ 5.46) and $SiH_2F_2(\tau$ 5.29).^{31,32}

It was not possible to fluorinate the silicon-hydrogen bonds of the alkoxysilane CH₃OSiH₃ or the bis(disilanyl) ether (SiH₃SiH₂)₂O by using PF₅. In both cases, cleavage of the silicon-oxygen bond occurred. We

$$CH_3OSiH_3 + PF_5 \longrightarrow SiH_3F + CH_3OPF_4$$

 $(SiH_3SiH_2)_2O + PF_5 \longrightarrow 2SiH_3SiH_2F + POF_8$

were able to isolate and characterize the SiH₃F produced in the reaction of CH₃OSiH₃ with PF₅, but it was not possible to characterize definitely the CH₃-OPF₄ presumably produced. The latter compound is known to be very reactive and easily decomposes even at low temperatures.³³ We did detect the presence of CH_3OPOF_2 in the reaction. This is reported to be one of the decomposition products of CH₃OPF₄.³³ The interaction of phosphorus pentafluoride with CH₃OSi-(CH₃)₃ likewise produced (CH₃)₃SiF and an unstable compound again presumed to be CH3OPF4, based on the presence of CH₃OPOF₂ in the reaction products.

The cleavage of the silicon-oxygen bond of siloxanes and alkoxysilanes by Lewis acids is thought to proceed

(31) H. J. Campbell-Ferguson, E. A. V. Ebsworth, A. G. MacDiarmid, and T. Yoshioka, J. Phys. Chem., 71, 723 (1967).
(32) E. A. V. Ebsworth and J. J. Turner, *ibid.*, 67, 805 (1963).

(33) K. D. Crosbie, G. W. Fraser, and D. W. A. Sharp, Chem. Ind. (London), 423 (1968).

via the initial formation of an acid-base adduct.^{34,85} Noting that the silicon-hydrogen bond of organosilanes such as C₂H₅SiH₃ can be fluorinated by PF₅,^{1b,29} it can be assumed that the fluorination reaction is not particularly dependent on the basicity of the silicon compound. Thus, owing to the greater basicity of CH₃- $OSiH_3$ relative to $(SiH_3)_2O$, ^{10, 36} there would be a greater tendency for the alkoxysilane to undergo adduct formation and hence cleavage with PF_5 rather than for $(SiH_3)_2O$ to undergo reaction in this manner. The reaction rates are apparently different enough to favor the cleavage in CH_3OSiH_3 , rather than the fluorination of the siliconhydrogen bond. In the $(SiH_3)_2O-PF_5$ reaction, both the cleavage and the fluorination reactions are observed to take place.

It has previously been shown that the silicon-oxygen bond in (SiH₃SiH₂)₂O is cleaved more readily by boron trichloride than the same bond in (SiH₃)₂O.³⁷ Thus, PF_5 may also have a greater tendency to cleave the silicon-oxygen bond of (SiH₃SiH₂)₂O than of (SiH₃)₂O. If this is true, the difference is apparently enough to favor completely the cleavage over the fluorination in the case of the (SiH₃SiH₂)₂O reaction. No partially fluorinated bis(disilanyl) ethers were detected in the reaction of (SiH₃SiH₂)₂O with phosphorus pentafluoride at -78°.

Acknowledgments .--- E. W. K. gratefully acknowledges a predoctoral fellowship from NASA. This work was partially supported by the National Science Foundation through Grant GP 12833.

(35) C. H. Van Dyke in "Organometallic Compounds of the Group IV Elements," A. G. MacDiarmid, Ed., Marcel Dekker, New York, N. Y., Vol. II, in press.

(36) A. G. MacDiarmid and C. H. Van Dyke, unpublished results.

(37) C. H. Van Dyke and A. G. MacDiarmid, Inorg. Chem., 3, 747 (1964).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA 15213

The Preparation and Characterization of Silylgermylmethane and Some of Its Inorganic Derivatives¹

BY CHARLES H. VAN DYKE,* EDWARD W. KIFER, AND GERST A. GIBBON

Received June 25, 1971

Silvlgermylmethane, GeH₃CH₂SiH₃, prepared by the interaction of SiH₃CH₂Cl with NaGeH₃, reacts with hydrogen chloride in the presence of aluminum chloride to yield GeH₃CH₂SiH₂Cl, GeH₃CH₂SiHCl₂, and (SiH₃CH₂)₂GeH₂. The hydrolysis of $GeH_3CH_2SiH_2Cl$ or its treatment with mercuric oxide leads to the formation of $(GeH_3CH_2SiH_2)_2O$. The new mixed hydride derivatives have been isolated and characterized. Their infrared and proton nmr spectra are discussed.

Although properties of the silicon-hydrogen and germanium-hydrogen bonds have been reasonably well established by studies of individual silanes and germanes, very little is known about the chemistry of compounds that have both these bonds present in the same molecule. The chemical properties of silanes

(1) Presented, in part, at the 158th National Meeting of the American Chemical Society, New York, N. Y., Sept 1969.

and germanes are similar in many respects^{2,3} and a general study of mixed silicon-germanium hydrides should help to point out important differences which may not be completely apparent in studies of individual compounds containing one or the other of (2) F. G. A. Stone, "Hydrogen, Compounds of the Group IV Elements,"

Prentice-Hall, Englewood Cliffs, N. J., 1962.

(3) K. M. Mackay, "Hydrogen Compounds of the Metallic Elements," Spon, London, 1966.

⁽³⁴⁾ C. Eaborn, "Organosilicon Compounds," Butterworths, London, 1960.